Enumerate "Data" Big Idea from College Board

Some of the big ideas and vocab that you observe, talk about it with a partner ...

  • "Data compression is the reduction of the number of bits needed to represent data"
  • "Data compression is used to save transmission time and storage space."
  • "lossy data can reduce data but the original data is not recovered"
  • "lossless data lets you restore and recover"

The Image Lab Project contains a plethora of College Board Unit 2 data concepts. Working with Images provides many opportunities for compression and analyzing size.

Image Files and Size

Here are some Images Files. Download these files, load them into images directory under _notebooks in your Blog.

Describe some of the meta data and considerations when managing Image files. Describe how these relate to Data Compression ...

  • File Type, PNG and JPG are two types used in this lab
  • Size, height and width, number of pixels
  • Visual perception, lossy compression

Displaying images in Python Jupyter notebook

Python Libraries and Concepts used for Jupyter and Files/Directories

IPython

Support visualization of data in Jupyter notebooks. Visualization is specific to View, for the web visualization needs to be converted to HTML.

pathlib

File paths are different on Windows versus Mac and Linux. This can cause problems in a project as you work and deploy on different Operating Systems (OS's), pathlib is a solution to this problem.

  • What are commands you use in terminal to access files?
  • What are the command you use in Windows terminal to access files?
  • What are some of the major differences?

Provide what you observed, struggled with, or leaned while playing with this code.

  • Why is path a big deal when working with images?
  • How does the meta data source and label relate to Unit 5 topics?
  • Look up IPython, describe why this is interesting in Jupyter Notebooks for both Pandas and Images?
from IPython.display import Image, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"},
            {'source': "Peter Carolin", 'label': "Smiley ", 'file': "smiley.png"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

def image_display(images):
    for image in images:  
        display(Image(filename=image['filename']))


# Run this as standalone tester to see sample data printed in Jupyter terminal
if __name__ == "__main__":
    # print parameter supplied image
    green_square = image_data(images=[{'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"}])
    image_display(green_square)
    
    # display default images from image_data()
    default_images = image_data()
    image_display(default_images)

Notes on Code Cell

{'source': "Peter Carolin", 'label': "Smiley ", 'file': "smiley.png"}

  • Source: artist/author
  • Label: name of image under images in notebooks.
  • Able to add code to manipilate color scale and size.

Reading and Encoding Images (2 implementations follow)

PIL (Python Image Library)

Pillow or PIL provides the ability to work with images in Python. Geeks for Geeks shows some ideas on working with images.

base64

Image formats (JPG, PNG) are often called *Binary File formats, it is difficult to pass these over HTTP. Thus, base64 converts binary encoded data (8-bit, ASCII/Unicode) into a text encoded scheme (24 bits, 6-bit Base64 digits). Thus base64 is used to transport and embed binary images into textual assets such as HTML and CSS.- How is Base64 similar or different to Binary and Hexadecimal?

  • Translate first 3 letters of your name to Base64.

numpy

Numpy is described as "The fundamental package for scientific computing with Python". In the Image Lab, a Numpy array is created from the image data in order to simplify access and change to the RGB values of the pixels, converting pixels to grey scale.

io, BytesIO

Input and Output (I/O) is a fundamental of all Computer Programming. Input/output (I/O) buffering is a technique used to optimize I/O operations. In large quantities of data, how many frames of input the server currently has queued is the buffer. In this example, there is a very large picture that lags.

  • Where have you been a consumer of buffering?
  • From your consumer experience, what effects have you experienced from buffering?
  • How do these effects apply to images?

Data Structures, Imperative Programming Style, and working with Images

Introduction to creating meta data and manipulating images. Look at each procedure and explain the the purpose and results of this program. Add any insights or challenges as you explored this program.

  • Does this code seem like a series of steps are being performed?
  • Describe Grey Scale algorithm in English or Pseudo code?
  • Describe scale image? What is before and after on pixels in three images?
  • Is scale image a type of compression? If so, line it up with College Board terms described?
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as pilImage is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"},
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

# Large image scaled to baseWidth of 320
def scale_image(img):
    baseWidth = 320
    scalePercent = (baseWidth/float(img.size[0]))
    scaleHeight = int((float(img.size[1])*float(scalePercent)))
    scale = (baseWidth, scaleHeight)
    return img.resize(scale)

# PIL image converted to base64
def image_to_base64(img, format):
    with BytesIO() as buffer:
        img.save(buffer, format)
        return base64.b64encode(buffer.getvalue()).decode()

# Set Properties of Image, Scale, and convert to Base64
def image_management(image):  # path of static images is defaulted        
    # Image open return PIL image object
    img = pilImage.open(image['filename'])
    
    # Python Image Library operations
    image['format'] = img.format
    image['mode'] = img.mode
    image['size'] = img.size
    # Scale the Image
    img = scale_image(img)
    image['pil'] = img
    image['scaled_size'] = img.size
    # Scaled HTML
    image['html'] = '<img src="data:image/png;base64,%s">' % image_to_base64(image['pil'], image['format'])
    
# Create Red Scale Base64 representation of Image
def image_management_add_html_grey(image):
    # Image open return PIL image object
    img = image['pil']
    format = image['format']
    
    img_data = img.getdata()  # Reference https://www.geeksforgeeks.org/python-pil-image-getdata/
    image['data'] = np.array(img_data) # PIL image to numpy array
    image['gray_data'] = [] # key/value for data converted to gray scale

    # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
    for pixel in image['data']:
        # create gray scale of image, ref: https://www.geeksforgeeks.org/convert-a-numpy-array-to-an-image/
        average = (pixel[0] + pixel[1] + pixel[2]) // 3  # average pixel values and use // for integer division
        if len(pixel) > 3:
            image['gray_data'].append((average, average, average, pixel[3])) # PNG format
        else:
            image['gray_data'].append((average, average, average))
        # end for loop for pixels
        
    img.putdata(image['gray_data'])
    image['html_grey'] = '<img src="data:image/png;base64,%s">' % image_to_base64(img, format)


# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    # Use numpy to concatenate two arrays
    images = image_data()
    
    # Display meta data, scaled view, and grey scale for each image
    for image in images:
        image_management(image)
        print("---- meta data -----")
        print(image['label'])
        print(image['source'])
        print(image['format'])
        print(image['mode'])
        print("Original size: ", image['size'])
        print("Scaled size: ", image['scaled_size'])
        
        print("-- original image --")
        display(HTML(image['html'])) 
        
        print("--- grey image ----")
        image_management_add_html_grey(image)
        display(HTML(image['html_grey'])) 
    print()
---- meta data -----
Green Square
Internet
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- original image --
--- grey image ----
---- meta data -----
Clouds Impression
Peter Carolin
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- original image --
--- grey image ----
---- meta data -----
Lassen Volcano
Peter Carolin
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- original image --
--- grey image ----

Notes on Code Cell

  • Changes color of pictures
  • able to manpulate size and color to personalize pictures.

Data Structures and OOP

Most data structures classes require Object Oriented Programming (OOP). Since this class is lined up with a College Course, OOP will be talked about often. Functionality in remainder of this Blog is the same as the prior implementation. Highlight some of the key difference you see between imperative and oop styles.

  • Read imperative and object-oriented programming on Wikipedia
  • Consider how data is organized in two examples, in relations to procedures
  • Look at Parameters in Imperative and Self in OOP

Additionally, review all the imports in these three demos. Create a definition of their purpose, specifically these ...

  • PIL
  • numpy
  • base64
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as pilImage is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np


class Image_Data:

    def __init__(self, source, label, file, path, baseWidth=320):
        self._source = source    # variables with self prefix become part of the object, 
        self._label = label
        self._file = file
        self._filename = path / file  # file with path
        self._baseWidth = baseWidth

        # Open image and scale to needs
        self._img = pilImage.open(self._filename)
        self._format = self._img.format
        self._mode = self._img.mode
        self._originalSize = self.img.size
        self.scale_image()
        self._html = self.image_to_html(self._img)
        self._html_grey = self.image_to_html_grey()


    @property
    def source(self):
        return self._source  
    
    @property
    def label(self):
        return self._label 
    
    @property
    def file(self):
        return self._file   
    
    @property
    def filename(self):
        return self._filename   
    
    @property
    def img(self):
        return self._img
             
    @property
    def format(self):
        return self._format
    
    @property
    def mode(self):
        return self._mode
    
    @property
    def originalSize(self):
        return self._originalSize
    
    @property
    def size(self):
        return self._img.size
    
    @property
    def html(self):
        return self._html
    
    @property
    def html_grey(self):
        return self._html_grey
        
    # Large image scaled to baseWidth of 320
    def scale_image(self):
        scalePercent = (self._baseWidth/float(self._img.size[0]))
        scaleHeight = int((float(self._img.size[1])*float(scalePercent)))
        scale = (self._baseWidth, scaleHeight)
        self._img = self._img.resize(scale)
    
    # PIL image converted to base64
    def image_to_html(self, img):
        with BytesIO() as buffer:
            img.save(buffer, self._format)
            return '<img src="data:image/png;base64,%s">' % base64.b64encode(buffer.getvalue()).decode()
            
    # Create Grey Scale Base64 representation of Image
    def image_to_html_grey(self):
        img_grey = self._img
        numpy = np.array(self._img.getdata()) # PIL image to numpy array
        
        grey_data = [] # key/value for data converted to gray scale
        # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
        for pixel in numpy:
            # create gray scale of image, ref: https://www.geeksforgeeks.org/convert-a-numpy-array-to-an-image/
            average = (pixel[0] + pixel[1] + pixel[2]) // 3  # average pixel values and use // for integer division
            if len(pixel) > 3:
                grey_data.append((average, average, average, pixel[3])) # PNG format
            else:
                grey_data.append((average, average, average))
            # end for loop for pixels
            
        img_grey.putdata(grey_data)
        return self.image_to_html(img_grey)

        
# prepares a series of images, provides expectation for required contents
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"},
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    return path, images

# turns data into objects
def image_objects():        
    id_Objects = []
    path, images = image_data()
    for image in images:
        id_Objects.append(Image_Data(source=image['source'], 
                                  label=image['label'],
                                  file=image['file'],
                                  path=path,
                                  ))
    return id_Objects

# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    for ido in image_objects(): # ido is an Imaged Data Object
        
        print("---- meta data -----")
        print(ido.label)
        print(ido.source)
        print(ido.file)
        print(ido.format)
        print(ido.mode)
        print("Original size: ", ido.originalSize)
        print("Scaled size: ", ido.size)
        
        print("-- scaled image --")
        display(HTML(ido.html))
        
        print("--- grey image ---")
        display(HTML(ido.html_grey))
        
    print()
---- meta data -----
Green Square
Internet
green-square-16.png
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- scaled image --
--- grey image ---
---- meta data -----
Clouds Impression
Peter Carolin
clouds-impression.png
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- scaled image --
--- grey image ---
---- meta data -----
Lassen Volcano
Peter Carolin
lassen-volcano.jpg
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- scaled image --
--- grey image ---

Hacks

Early Seed award

  • Add this Blog to you own Blogging site.
  • In the Blog add a Happy Face image.
  • Have Happy Face Image open when Tech Talk starts, running on localhost. Don't tell anyone. Show to Teacher.

AP Prep

  • In the Blog add notes and observations on each code cell that request an answer.
  • In blog add College Board practice problems for 2.3
  • Choose 2 images, one that will more likely result in lossy data compression and one that is more likely to result in lossless data compression. Explain.

Project Addition

  • If your project has images in it, try to implement an image change that has a purpose. (Ex. An item that has been sold out could become gray scale)

Pick a programming paradigm and solve some of the following ...

  • Numpy, manipulating pixels. As opposed to Grey Scale treatment, pick a couple of other types like red scale, green scale, or blue scale. We want you to be manipulating pixels in the image.
  • Binary and Hexadecimal reports. Convert and produce pixels in binary and Hexadecimal and display.
  • Compression and Sizing of images. Look for insights into compression Lossy and Lossless. Look at PIL library and see if there are other things that can be done.
  • There are many effects you can do as well with PIL. Blur the image or write Meta Data on screen, aka Title, Author and Image size.

Collegeboard Quiz and Reflections

Extracting Information from Data Quiz

Score: 5/6

  1. A researcher is analyzing data about students in a school district to determine whether there is a relationship between grade point average and number of absences. The researcher plans on compiling data from several sources to create a record for each student.

The researcher has access to a database with the following information about each student.

  • Last name
  • First name
  • Grade level (9, 10, 11, or 12)
  • Grade point average (on a 0.0 to 4.0 scale)

The researcher also has access to another database with the following information about each student.

  • First name
  • Last name
  • Number of absences from school
  • Number of late arrivals to school

Upon compiling the data, the researcher identifies a problem due to the fact that neither data source uses a unique ID number for each student. Which of the following best describes the problem caused by the lack of unique ID numbers?

My Answer:

Students who have the same grade level may be confused with each other.

Why is it wrong?

It is expected that many students in the school district have the grade level as each other. These students can be distinguished from each other using their first and last names, except in cases where two students have the same first and last name.

Correct Answer

Students who have the same name may be confused with each other.

Why is it right?

A unique identifier would be required in order to distinguish between two students with the same first and last names.

Reflections From Quiz

  • I practiced identifying potential errors in the information in a database. This includes lack of specifity, repeats in information that could mix up users, and the importance of having a unique ID per user.

  • I practiced identifying errors with the database that could occur if the user makes an error.

  • I learned that Metadata are important because it explains a data set to others. Data sets exist within a certain context, and this context must be communicated well for others to reuse the data set.

Data Compression Quiz Reflection

Score: 3/3

  • I learned the advantage of lossless over lossy compression: Lossy will save you the most space, but can affect your image quality. Lossless saves less space, but won't usually impact your image quality.

  • Lossless compression algorithms allow for complete reconstruction of the original data and typically reduce the size of the data.

  • Although fewer bits may be stored, information is not necessarily lost when lossy compression is applied to an image.

Lossy Data Compression Images

Why are these Lossy?

  • these images are lossy compression because some information has been permanently removed from the original image in order to reduce its file size.

  • In the Ruby-LowCompression-Tiny.jpg image, the file size has been reduced by decreasing the amount of detail and color accuracy in the image. This is why the image appears more pixelated and has a lower resolution compared to the original.

  • JPEG uses a lossy compression algorithm, which means that some information from the original image is discarded in order to reduce the file size. JPEG is commonly used for photographs and other images that do not require the same level of detail and sharpness as logos and diagrams, therefore, able to use a lossy compression algorithm.

from IPython.display import Image, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Peter Carolin", 'label': "Ruby-HighCompression-Tiny", 'file': "Ruby-HighCompression-Tiny.jpeg"},
            {'source': "Peter Carolin", 'label': "parrot", 'file': "parrot.png"},

        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

def image_display(images):
    for image in images:  
        display(Image(filename=image['filename']))


# Run this as standalone tester to see sample data printed in Jupyter terminal
if __name__ == "__main__":
    # print parameter supplied image
  
    
    
    # display default images from image_data()
    default_images = image_data()
    image_display(default_images)

Lossless Data Compression Images

Why are these Lossless Compression?

  • Lossless compression is a method of data compression that allows the original data to be reconstructed perfectly from the compressed data. In other words, no information is lost during the compression process.

  • This is achieved by using compression algorithms that identify and remove redundant information from the data, without altering the original information.

from IPython.display import Image, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Peter Carolin", 'label': "Lossless Parrot", 'file': "lossless parrot.png"},
            {'source': "Peter Carolin", 'label': "Lossless Cat", 'file': "lossless cat.png"},

        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

def image_display(images):
    for image in images:  
        display(Image(filename=image['filename']))


# Run this as standalone tester to see sample data printed in Jupyter terminal
if __name__ == "__main__":
    # print parameter supplied image
  
    
    
    # display default images from image_data()
    default_images = image_data()
    image_display(default_images)

Numpy, manipulating pixels

  • 'image_data: prepares a series of images by specifying their filenames and other metadata in a list of dictionaries. If no images are specified, it defaults to two images.

  • scale_image: scales an image to a specified width while maintaining its aspect ratio.

  • image_to_base64: converts a PIL image object to a base64-encoded string.

  • image_management: takes a dictionary of image metadata and updates it with information about the image's format, mode, size, scaled size, and base64-encoded HTML representation.

  • image_management_add_html_red: takes a dictionary of image metadata and updates it with a base64-encoded HTML representation of the image with a red color scale.

  • image_management_add_html_blue: takes a dictionary of image metadata and updates it with a base64-encoded HTML representation of the image with a blue color scale.

  • image_management_add_html_green: takes a dictionary of image metadata and updates it with a base64-encoded HTML representation of the image with a green color scale.

from IPython.display import HTML, display
from pathlib import Path 
from PIL import Image as pilImage  
from io import BytesIO
import base64
import numpy as np

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Smiley", 'file': "smiley.png"},
            {'source': "Internet", 'label': "parrot", 'file': "parrot.png"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

# Large image scaled to baseWidth of 320
def scale_image(img):
    baseWidth = 320
    scalePercent = (baseWidth/float(img.size[0]))
    scaleHeight = int((float(img.size[1])*float(scalePercent)))
    scale = (baseWidth, scaleHeight)
    return img.resize(scale)

# PIL image converted to base64
def image_to_base64(img, format):
    with BytesIO() as buffer:
        img.save(buffer, format)
        return base64.b64encode(buffer.getvalue()).decode()

# Set Properties of Image, Scale, and convert to Base64
def image_management(image):  # path of static images is defaulted        
    # Image open return PIL image object
    img = pilImage.open(image['filename'])
    
    # Python Image Library operations
    image['format'] = img.format
    image['mode'] = img.mode
    image['size'] = img.size
    # Scale the Image
    img = scale_image(img)
    image['pil'] = img
    image['scaled_size'] = img.size
    # Scaled HTML
    image['html'] = '<img src="data:image/png;base64,%s">' % image_to_base64(image['pil'], image['format'])
    
# Create Red Scale Base64 representation of Image
def image_management_add_html_red(image):
    # Image open return PIL image object
    img = image['pil']
    format = image['format']
    
    img_data = img.getdata()  # Reference https://www.geeksforgeeks.org/python-pil-image-getdata/
    image['data'] = np.array(img_data) # PIL image to numpy array
    image['red_data'] = [] # key/value for data converted to gray scale

    # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
    for pixel in image['data']:
        # create red scale of image 
        red = pixel[0]  # rbg = red blue green so first integer being 0 means the red color is what remains
        if len(pixel) > 3:
            image['red_data'].append((red, 0, 0, pixel[3])) # PNG format
        else:
            image['red_data'].append((red, 0, 0))
        # end for loop for pixels
        
    img.putdata(image['red_data'])
    image['html_red'] = '<img src="data:image/png;base64,%s">' % image_to_base64(img, format)

# Create Blue Scale Base64 representation of Image
def image_management_add_html_blue(image):
    # Image open return PIL image object
    img = image['pil']
    format = image['format']
    
    img_data = img.getdata()  # Reference https://www.geeksforgeeks.org/python-pil-image-getdata/
    image['data'] = np.array(img_data) # PIL image to numpy array
    image['blue_data'] = [] # key/value for data converted to gray scale

    # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
    for pixel in image['data']:
        # create blue scale of image 
        blue = pixel[0]  
        if len(pixel) > 3:
            image['blue_data'].append((0, 0, blue, pixel[3])) # PNG format
        else:
            image['blue_data'].append((0, 0, blue))
        # end for loop for pixels
        
    img.putdata(image['blue_data'])
    image['html_blue'] = '<img src="data:image/png;base64,%s">' % image_to_base64(img, format)

# Create Green Scale Base64 representation of Image
def image_management_add_html_green(image):
    # Image open return PIL image object
    img = image['pil']
    format = image['format']
    
    img_data = img.getdata()  # Reference https://www.geeksforgeeks.org/python-pil-image-getdata/
    image['data'] = np.array(img_data) # PIL image to numpy array
    image['green_data'] = [] # key/value for data converted to gray scale

    # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
    for pixel in image['data']:
        # create green scale of image 
        green = pixel[0]   
        if len(pixel) > 3:
            image['green_data'].append((0, green, 0, pixel[3])) # PNG format
        else:
            image['green_data'].append((0, green, 0))
        # end for loop for pixels
        
    img.putdata(image['green_data'])
    image['html_green'] = '<img src="data:image/png;base64,%s">' % image_to_base64(img, format)


# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    # Use numpy to concatenate two arrays
    images = image_data()
    
    # Display meta data, scaled view, and grey scale for each image
    for image in images:
        image_management(image)
      
        print("-- original image --")
        display(HTML(image['html'])) 
        
        print("--- red image ----")
        image_management_add_html_red(image)
        display(HTML(image['html_red'])) 

        print("--- blue image ----")
        image_management_add_html_blue(image)
        display(HTML(image['html_blue'])) 

        print("--- green image ----")
        image_management_add_html_green(image)
        display(HTML(image['html_green'])) 
    print()
-- original image --
--- red image ----
--- blue image ----
--- green image ----
-- original image --
--- red image ----
--- blue image ----
--- green image ----

Binary and Hexadecimal reports

  • This code creates a small black and white BMP image with 2x2 pixels using Python's PIL module. the pixel values could be set using the hexadecimal data by uncommenting the second set of for loops and commenting out the first set of for loops.

  • The pixel values could be set using the hexadecimal data by uncommenting the second set of for loops and commenting out the first set of for loops.

  • Finally, the image is saved as a BMP file named 'example.bmp' using the img.save() method.

from PIL import Image

# Binary data (2x2 pixels)
binary_data = '11001100' + '00110011'

# Hexadecimal data (2x2 pixels)
hex_data = 'CC' + '33'

# Create an empty image with mode '1' (black and white)
img = Image.new('1', (2, 2))

# Set the pixel values from binary data
pixels = img.load()
for y in range(img.height):
    for x in range(img.width):
        pixels[x, y] = int(binary_data[y*img.width + x])

# Alternatively, set the pixel values from hexadecimal data
# pixels = img.load()
# for y in range(img.height):
#     for x in range(img.width):
#         pixels[x, y] = int(hex_data[y*img.width + x], 16)

# Save the image file
img.save('example.bmp')
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as pilImage is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np


class Image_Data:

    def __init__(self, source, label, file, path, baseWidth=320):
        self._source = source    # variables with self prefix become part of the object, 
        self._label = label
        self._file = file
        self._filename = path / file  # file with path
        self._baseWidth = baseWidth

        # Open image and scale to needs
        self._img = pilImage.open(self._filename)
        self._format = self._img.format
        self._mode = self._img.mode
        self._originalSize = self.img.size
        self.scale_image()
        self._html = self.image_to_html(self._img)
        self._html_grey = self.image_to_html_grey()


    @property
    def source(self):
        return self._source  
    
    @property
    def label(self):
        return self._label 
    
    @property
    def file(self):
        return self._file   
    
    @property
    def filename(self):
        return self._filename   
    
    @property
    def img(self):
        return self._img
             
    @property
    def format(self):
        return self._format
    
    @property
    def mode(self):
        return self._mode
    
    @property
    def originalSize(self):
        return self._originalSize
    
    @property
    def size(self):
        return self._img.size
    
    @property
    def html(self):
        return self._html
    
    @property
    def html_grey(self):
        return self._html_grey
        
    # Large image scaled to baseWidth of 320
    def scale_image(self):
        scalePercent = (self._baseWidth/float(self._img.size[0]))
        scaleHeight = int((float(self._img.size[1])*float(scalePercent)))
        scale = (self._baseWidth, scaleHeight)
        self._img = self._img.resize(scale)
    
    # PIL image converted to base64
    def image_to_html(self, img):
        with BytesIO() as buffer:
            img.save(buffer, self._format)
            return '<img src="data:image/png;base64,%s">' % base64.b64encode(buffer.getvalue()).decode()
            
    # Create Grey Scale Base64 representation of Image
    def image_to_html_grey(self):
        img_grey = self._img
        numpy = np.array(self._img.getdata()) # PIL image to numpy array
        
        grey_data = [] # key/value for data converted to gray scale
        # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
        for pixel in numpy:
            # create gray scale of image, ref: https://www.geeksforgeeks.org/convert-a-numpy-array-to-an-image/
            average = (pixel[2] + pixel[0] + pixel[0]) // 3  # average pixel values and use // for integer division
            if len(pixel) > 3:
                grey_data.append((average, average, average, pixel[3])) # PNG format
            else:
                grey_data.append((average, average, average))
            # end for loop for pixels
            
        img_grey.putdata(grey_data)
        return self.image_to_html(img_grey)

        
# prepares a series of images, provides expectation for required contents
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"},
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    return path, images

# turns data into objects
def image_objects():        
    id_Objects = []
    path, images = image_data()
    for image in images:
        id_Objects.append(Image_Data(source=image['source'], 
                                  label=image['label'],
                                  file=image['file'],
                                  path=path,
                                  ))
    return id_Objects

# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    for ido in image_objects(): # ido is an Imaged Data Object
        
        print("---- meta data -----")
        print(ido.label)
        print(ido.source)
        print(ido.file)
        print(ido.format)
        print(ido.mode)
        print("Original size: ", ido.originalSize)
        print("Scaled size: ", ido.size)
        
        print("-- scaled image --")
        display(HTML(ido.html))
        
        print("--- grey image ---")
        display(HTML(ido.html_grey))
        
    print()
---- meta data -----
Green Square
Internet
green-square-16.png
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- scaled image --
--- grey image ---
---- meta data -----
Clouds Impression
Peter Carolin
clouds-impression.png
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- scaled image --
--- grey image ---
---- meta data -----
Lassen Volcano
Peter Carolin
lassen-volcano.jpg
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- scaled image --
--- grey image ---